3.2.60 \(\int \frac {x^3 (a+b \text {sech}^{-1}(c x))}{(d+e x^2)^{3/2}} \, dx\) [160]

Optimal. Leaf size=177 \[ \frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}-\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \text {ArcTan}\left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{c e^{3/2}}-\frac {2 b \sqrt {d} \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{e^2} \]

[Out]

-b*arctan(e^(1/2)*(-c^2*x^2+1)^(1/2)/c/(e*x^2+d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)/c/e^(3/2)-2*b*arctanh(
(e*x^2+d)^(1/2)/d^(1/2)/(-c^2*x^2+1)^(1/2))*d^(1/2)*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)/e^2+d*(a+b*arcsech(c*x))/e
^2/(e*x^2+d)^(1/2)+(a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/e^2

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 177, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 11, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {272, 45, 6436, 12, 587, 163, 65, 223, 209, 95, 213} \begin {gather*} \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}-\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \text {ArcTan}\left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{c e^{3/2}}-\frac {2 b \sqrt {d} \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcSech[c*x]))/(d + e*x^2)^(3/2),x]

[Out]

(d*(a + b*ArcSech[c*x]))/(e^2*Sqrt[d + e*x^2]) + (Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]))/e^2 - (b*Sqrt[(1 + c*x
)^(-1)]*Sqrt[1 + c*x]*ArcTan[(Sqrt[e]*Sqrt[1 - c^2*x^2])/(c*Sqrt[d + e*x^2])])/(c*e^(3/2)) - (2*b*Sqrt[d]*Sqrt
[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*ArcTanh[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[1 - c^2*x^2])])/e^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 587

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6436

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSech[c*x], u, x] + Dist[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)],
 Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] &&
 ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ
[m + 2*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \text {sech}^{-1}(c x)\right )}{\left (d+e x^2\right )^{3/2}} \, dx &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {2 d+e x^2}{e^2 x \sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \, dx\\ &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {2 d+e x^2}{x \sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \, dx}{e^2}\\ &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {2 d+e x}{x \sqrt {1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{2 e^2}\\ &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\frac {\left (b d \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{e^2}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{2 e}\\ &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}+\frac {\left (2 b d \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{-d+x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {1-c^2 x^2}}\right )}{e^2}-\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}-\frac {e x^2}{c^2}}} \, dx,x,\sqrt {1-c^2 x^2}\right )}{c^2 e}\\ &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}-\frac {2 b \sqrt {d} \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{e^2}-\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {1}{1+\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {1-c^2 x^2}}{\sqrt {d+e x^2}}\right )}{c^2 e}\\ &=\frac {d \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{e^2}-\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{c e^{3/2}}-\frac {2 b \sqrt {d} \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {1-c^2 x^2}}\right )}{e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 21.06, size = 249, normalized size = 1.41 \begin {gather*} \frac {\left (2 d+e x^2\right ) \left (a+b \text {sech}^{-1}(c x)\right )}{e^2 \sqrt {d+e x^2}}+\frac {b \sqrt {\frac {1-c x}{1+c x}} \sqrt {1-c^2 x^2} \left (\sqrt {-c^2} \sqrt {-c^2 d-e} \sqrt {e} \sqrt {\frac {c^2 \left (d+e x^2\right )}{c^2 d+e}} \text {ArcSin}\left (\frac {c \sqrt {e} \sqrt {1-c^2 x^2}}{\sqrt {-c^2} \sqrt {-c^2 d-e}}\right )+2 c^3 \sqrt {d} \sqrt {-d-e x^2} \text {ArcTan}\left (\frac {\sqrt {d} \sqrt {1-c^2 x^2}}{\sqrt {-d-e x^2}}\right )\right )}{c^3 e^2 (-1+c x) \sqrt {d+e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(a + b*ArcSech[c*x]))/(d + e*x^2)^(3/2),x]

[Out]

((2*d + e*x^2)*(a + b*ArcSech[c*x]))/(e^2*Sqrt[d + e*x^2]) + (b*Sqrt[(1 - c*x)/(1 + c*x)]*Sqrt[1 - c^2*x^2]*(S
qrt[-c^2]*Sqrt[-(c^2*d) - e]*Sqrt[e]*Sqrt[(c^2*(d + e*x^2))/(c^2*d + e)]*ArcSin[(c*Sqrt[e]*Sqrt[1 - c^2*x^2])/
(Sqrt[-c^2]*Sqrt[-(c^2*d) - e])] + 2*c^3*Sqrt[d]*Sqrt[-d - e*x^2]*ArcTan[(Sqrt[d]*Sqrt[1 - c^2*x^2])/Sqrt[-d -
 e*x^2]]))/(c^3*e^2*(-1 + c*x)*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]
time = 1.29, size = 0, normalized size = 0.00 \[\int \frac {x^{3} \left (a +b \,\mathrm {arcsech}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x)

[Out]

int(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

(x^2*e^(-1)/sqrt(x^2*e + d) + 2*d*e^(-2)/sqrt(x^2*e + d))*a + b*integrate(x^3*log(sqrt(1/(c*x) + 1)*sqrt(1/(c*
x) - 1) + 1/(c*x))/(x^2*e + d)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 529 vs. \(2 (116) = 232\).
time = 0.49, size = 1095, normalized size = 6.19 \begin {gather*} \left [-\frac {{\left (b x^{2} \cosh \left (1\right ) + b x^{2} \sinh \left (1\right ) + b d\right )} \sqrt {\cosh \left (1\right ) + \sinh \left (1\right )} \arctan \left (\frac {{\left (c^{2} d x + {\left (2 \, c^{2} x^{3} - x\right )} \cosh \left (1\right ) + {\left (2 \, c^{2} x^{3} - x\right )} \sinh \left (1\right )\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} \sqrt {\cosh \left (1\right ) + \sinh \left (1\right )}}{2 \, {\left ({\left (c^{2} x^{4} - x^{2}\right )} \cosh \left (1\right )^{2} + {\left (c^{2} x^{4} - x^{2}\right )} \sinh \left (1\right )^{2} + {\left (c^{2} d x^{2} - d\right )} \cosh \left (1\right ) + {\left (c^{2} d x^{2} + 2 \, {\left (c^{2} x^{4} - x^{2}\right )} \cosh \left (1\right ) - d\right )} \sinh \left (1\right )\right )}}\right ) - 2 \, {\left (b c x^{2} \cosh \left (1\right ) + b c x^{2} \sinh \left (1\right ) + 2 \, b c d\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \log \left (\frac {c x \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 1}{c x}\right ) - {\left (b c x^{2} \cosh \left (1\right ) + b c x^{2} \sinh \left (1\right ) + b c d\right )} \sqrt {d} \log \left (\frac {c^{4} d^{2} x^{4} - 8 \, c^{2} d^{2} x^{2} + x^{4} \cosh \left (1\right )^{2} + x^{4} \sinh \left (1\right )^{2} + 4 \, {\left (c^{3} d x^{3} - c x^{3} \cosh \left (1\right ) - c x^{3} \sinh \left (1\right ) - 2 \, c d x\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \sqrt {d} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 8 \, d^{2} - 2 \, {\left (3 \, c^{2} d x^{4} - 4 \, d x^{2}\right )} \cosh \left (1\right ) - 2 \, {\left (3 \, c^{2} d x^{4} - x^{4} \cosh \left (1\right ) - 4 \, d x^{2}\right )} \sinh \left (1\right )}{x^{4}}\right ) - 2 \, {\left (a c x^{2} \cosh \left (1\right ) + a c x^{2} \sinh \left (1\right ) + 2 \, a c d\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d}}{2 \, {\left (c x^{2} \cosh \left (1\right )^{3} + c x^{2} \sinh \left (1\right )^{3} + c d \cosh \left (1\right )^{2} + {\left (3 \, c x^{2} \cosh \left (1\right ) + c d\right )} \sinh \left (1\right )^{2} + {\left (3 \, c x^{2} \cosh \left (1\right )^{2} + 2 \, c d \cosh \left (1\right )\right )} \sinh \left (1\right )\right )}}, -\frac {2 \, {\left (b c x^{2} \cosh \left (1\right ) + b c x^{2} \sinh \left (1\right ) + b c d\right )} \sqrt {-d} \arctan \left (-\frac {{\left (c^{3} d x^{3} - c x^{3} \cosh \left (1\right ) - c x^{3} \sinh \left (1\right ) - 2 \, c d x\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \sqrt {-d} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}}}{2 \, {\left (c^{2} d^{2} x^{2} - d^{2} + {\left (c^{2} d x^{4} - d x^{2}\right )} \cosh \left (1\right ) + {\left (c^{2} d x^{4} - d x^{2}\right )} \sinh \left (1\right )\right )}}\right ) + {\left (b x^{2} \cosh \left (1\right ) + b x^{2} \sinh \left (1\right ) + b d\right )} \sqrt {\cosh \left (1\right ) + \sinh \left (1\right )} \arctan \left (\frac {{\left (c^{2} d x + {\left (2 \, c^{2} x^{3} - x\right )} \cosh \left (1\right ) + {\left (2 \, c^{2} x^{3} - x\right )} \sinh \left (1\right )\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} \sqrt {\cosh \left (1\right ) + \sinh \left (1\right )}}{2 \, {\left ({\left (c^{2} x^{4} - x^{2}\right )} \cosh \left (1\right )^{2} + {\left (c^{2} x^{4} - x^{2}\right )} \sinh \left (1\right )^{2} + {\left (c^{2} d x^{2} - d\right )} \cosh \left (1\right ) + {\left (c^{2} d x^{2} + 2 \, {\left (c^{2} x^{4} - x^{2}\right )} \cosh \left (1\right ) - d\right )} \sinh \left (1\right )\right )}}\right ) - 2 \, {\left (b c x^{2} \cosh \left (1\right ) + b c x^{2} \sinh \left (1\right ) + 2 \, b c d\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d} \log \left (\frac {c x \sqrt {-\frac {c^{2} x^{2} - 1}{c^{2} x^{2}}} + 1}{c x}\right ) - 2 \, {\left (a c x^{2} \cosh \left (1\right ) + a c x^{2} \sinh \left (1\right ) + 2 \, a c d\right )} \sqrt {x^{2} \cosh \left (1\right ) + x^{2} \sinh \left (1\right ) + d}}{2 \, {\left (c x^{2} \cosh \left (1\right )^{3} + c x^{2} \sinh \left (1\right )^{3} + c d \cosh \left (1\right )^{2} + {\left (3 \, c x^{2} \cosh \left (1\right ) + c d\right )} \sinh \left (1\right )^{2} + {\left (3 \, c x^{2} \cosh \left (1\right )^{2} + 2 \, c d \cosh \left (1\right )\right )} \sinh \left (1\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*((b*x^2*cosh(1) + b*x^2*sinh(1) + b*d)*sqrt(cosh(1) + sinh(1))*arctan(1/2*(c^2*d*x + (2*c^2*x^3 - x)*cos
h(1) + (2*c^2*x^3 - x)*sinh(1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2))*sqrt(cosh(1
) + sinh(1))/((c^2*x^4 - x^2)*cosh(1)^2 + (c^2*x^4 - x^2)*sinh(1)^2 + (c^2*d*x^2 - d)*cosh(1) + (c^2*d*x^2 + 2
*(c^2*x^4 - x^2)*cosh(1) - d)*sinh(1))) - 2*(b*c*x^2*cosh(1) + b*c*x^2*sinh(1) + 2*b*c*d)*sqrt(x^2*cosh(1) + x
^2*sinh(1) + d)*log((c*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 1)/(c*x)) - (b*c*x^2*cosh(1) + b*c*x^2*sinh(1) + b*c
*d)*sqrt(d)*log((c^4*d^2*x^4 - 8*c^2*d^2*x^2 + x^4*cosh(1)^2 + x^4*sinh(1)^2 + 4*(c^3*d*x^3 - c*x^3*cosh(1) -
c*x^3*sinh(1) - 2*c*d*x)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt(d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 8*d^2 -
2*(3*c^2*d*x^4 - 4*d*x^2)*cosh(1) - 2*(3*c^2*d*x^4 - x^4*cosh(1) - 4*d*x^2)*sinh(1))/x^4) - 2*(a*c*x^2*cosh(1)
 + a*c*x^2*sinh(1) + 2*a*c*d)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d))/(c*x^2*cosh(1)^3 + c*x^2*sinh(1)^3 + c*d*co
sh(1)^2 + (3*c*x^2*cosh(1) + c*d)*sinh(1)^2 + (3*c*x^2*cosh(1)^2 + 2*c*d*cosh(1))*sinh(1)), -1/2*(2*(b*c*x^2*c
osh(1) + b*c*x^2*sinh(1) + b*c*d)*sqrt(-d)*arctan(-1/2*(c^3*d*x^3 - c*x^3*cosh(1) - c*x^3*sinh(1) - 2*c*d*x)*s
qrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt(-d)*sqrt(-(c^2*x^2 - 1)/(c^2*x^2))/(c^2*d^2*x^2 - d^2 + (c^2*d*x^4 - d
*x^2)*cosh(1) + (c^2*d*x^4 - d*x^2)*sinh(1))) + (b*x^2*cosh(1) + b*x^2*sinh(1) + b*d)*sqrt(cosh(1) + sinh(1))*
arctan(1/2*(c^2*d*x + (2*c^2*x^3 - x)*cosh(1) + (2*c^2*x^3 - x)*sinh(1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*s
qrt(-(c^2*x^2 - 1)/(c^2*x^2))*sqrt(cosh(1) + sinh(1))/((c^2*x^4 - x^2)*cosh(1)^2 + (c^2*x^4 - x^2)*sinh(1)^2 +
 (c^2*d*x^2 - d)*cosh(1) + (c^2*d*x^2 + 2*(c^2*x^4 - x^2)*cosh(1) - d)*sinh(1))) - 2*(b*c*x^2*cosh(1) + b*c*x^
2*sinh(1) + 2*b*c*d)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*log((c*x*sqrt(-(c^2*x^2 - 1)/(c^2*x^2)) + 1)/(c*x)) -
 2*(a*c*x^2*cosh(1) + a*c*x^2*sinh(1) + 2*a*c*d)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d))/(c*x^2*cosh(1)^3 + c*x^2
*sinh(1)^3 + c*d*cosh(1)^2 + (3*c*x^2*cosh(1) + c*d)*sinh(1)^2 + (3*c*x^2*cosh(1)^2 + 2*c*d*cosh(1))*sinh(1))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} \left (a + b \operatorname {asech}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*asech(c*x))/(e*x**2+d)**(3/2),x)

[Out]

Integral(x**3*(a + b*asech(c*x))/(d + e*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arcsech(c*x))/(e*x^2+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsech(c*x) + a)*x^3/(e*x^2 + d)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*acosh(1/(c*x))))/(d + e*x^2)^(3/2),x)

[Out]

int((x^3*(a + b*acosh(1/(c*x))))/(d + e*x^2)^(3/2), x)

________________________________________________________________________________________